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I.   INTRODUCTION 

Research in the time period covered by this report has been 

concentrated primarily on the subject of linear, space-variant restora- 

tion of blurred, photon limited images. However, some effort has also 

been devoted to extending our previous work on photon limitations in 

compensated imaging, particularly an extension of the results presented 

in RADC report #RADC~TR-77-l65. 

In section II we discuss the extensions mentioned above. Section 

ill briefly describe» some unsuccessful attempts at formulating the space- 

variant filtering problem in continuous notation. Section IV deals with 

a more successful discrete formulation of this problem. Finally, section V 

outlines the numerical computations now being undertaken. 

I I.  FURTHER PERFORHANCE PREDICTIONS FOR A PRE- AND 

POST-COMPENSATED IMAGING SYSTEM 

In two previous technical reports (RADC-TR-76-382 and RADC*TR-77-i65) 

the photon-H mi ted performance of a spec(He compensated imaging system 

was analyzed.  The primary results of this analysis were two figures 

showing restored bandwidth ÄU and quality factor Q as a function cf the 

total number N of photoevents intercepted by the system for a variety 

of combinations of pre- and post-processing.  Figure 8 of RADC-TR-76-382 

showed that the restored bandwiuth of the pre- and post-compensated 

system reached the diffractton-1imited bandwidth when approximately 10 

photoevents were intercepted by the system, this conclusion being valid 

for a point-source object. 

In the derivation of these curves, certain assumptions about the 

system were made.  These included assumptions that the atmospheric 
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coherence diameter r  was 10cm, that the system employed a shearing 

Interferometer with 317 subapertures. and that the ratio of Image 

Integration time to wavefront sensor Integration time was 10 .  In 

addition it was assumed that the system employed a fixed splitting 

ratio such that 90^ of the incoming light was sent to the wavefront 

sensor and lO1^ wai sent to the image detector.  The 90^ splitting ratio 

was found to be nearly optimum, although the maximum is very broad. 

Concerns were expressed by members of the Review Group that the 

number of photoevents required in the image {\0%  x 10 " 10 photoevents) 

might saturate the detector.  Examination of the calculations showed 

that the requirement for 10 total photoevents was dominated by the flux 

required for satisfactory operation of the wavefront sensor, and it was 

spjculateu that the us? of smaller splitting ratios (less than 10^ to the 

•mage) would reduce the dynamic range required of the detector without 

seriously degrading the quality ut the final restored image. 

The correctness of this speculation was Investigated by setting 

the performance of the wavefront sensor at certain fixed levels, and 

calculating restored bandwidth and Image quality as a function of th? total 

number of photoevents in the detected image.  This latter quantity is 

represented by the symbol  N.. 

The results of these calculations are presented In Fig. I.  Part 

(a) shows the restored bandwidth ATT (cycles/m rad) vs.  N. , while part 

(b) shows the quality factor  Q vs. N.,  In both cases, three curves are 

presented, one for each of three levels of performance of the wavefront 

seisor.  The parameter  ^  represents the residual rms wavefront error 

^measurement noise plus ♦ttting error) and takes on the values 0.S radians, 

1.5 radijns and ^«.5 radians.  These numbers correspond to 0.08, 0.2^ and 

0.72 waves of rms error. 
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(a) 

(b) 

Figure I: Restored bandwidth («) «nd quality factor 
(b) vs. average number of inuge photoevents 
for fixed levels of performance of the wave- 
front sensor. 
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As can be seen from part (a) of the figure, when o - 0.5 radians, 

the restored bandwidth is essentially indistinguishable from the diffraction 

limited bandwidth, even for as few as 100 photoevents in the image. 

For 9 ■ I.S radians, about 10 image photoevents are needed to achieve 

the diffraction-limited restored bandwidth.  Finally, when o • ^.5 

radians» the performance of the waverront sensor is so poor that enormous 

numbers of Image photoevents (considerably more than 10 ) are needed to 

achieve diffraction-Iimited performance. 

Hopefully, this set of calculations will provide some indication 

of the numbers of image photoevents that will be required to achieve 

satisfactory Quality in the final restored images. 

III.  CONTINUOUS FORMULATION OF THE SPACE-VARIANT 

RESTORATION PR0BLEH 

All previous analysis of the performance of pre- and post-compensated 

Imaging systems has assumed that the final post-detect ion restoration 

filter is a linear space-invariant Wiener filter. This type of filtering 

is known to be optimum only when the signal and noise are uncorrelated 

stationary random processes «nd when the noise statistics are gaussian. 

In the regime of photon-Iimited imaging, the noise is non-gaussian and 

signaI-dependent, and it is therefore reasonable to assume that tome form 

of linear, space-variant filtering or nonlinear filtering will perform 

better than the simple filtering used in earlier analyses. 

The change from linear space-invariant filtering to more complex 

filtering strategies has associated with it a cost in computational com- 

plexity and processing time.  It is natural therefore to inquire as to 

how much Image quality is gained by these more complex methods« and at 

what price. 
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In this report we consider only linaar, space-variant, least-mean- 

square filtering. Such filters depend on certain average properties of 

the class of images anticipated» but do not depend on the particular image 

detected on any given trial. Techniques which perform a filtering oper- 

ation that depends on the particular image detected are generally non- 

linear, and will be considered in later work under this contract. 

Figure 2 illustrates the nature of the least-square-filtering 

problem of interest to us here. For simplicity a one-dimensional space 

variable x is used throughout. The object radiance distribution o(x) 

is assumed to be a random process.  In general the statistics o(x} may 

be non-stationary; hence its autocorrelation function R Uj »O  is 

a function of the two space coordinates x. and x. rather than Just 

their difference. 

The object radiance distribution is subjected to a linear blur, 

described by an impulse response or point-spread function that is in 

general space-variant, and is represented by b(x »Xj)* The result is a 

classical image irradiance 1(x)  incident on the detector, where 

i(*) •  f Mx,c)oU)dC (0 

Through the detection process, a detected image d(x)  is generated. 

As implied by the semi-classical theory cf photodetection, d(x)  is a 

doubly stochastic Potsson impulse process, with space-variant mean X(x) 

related to the classical image intensity through 

iM    - ll iU) (2) 
hv 

where r  is the quantum efficiency, T the Integration tin«, h is 

Planck's constant, and v is the mean optical frequency. The detected 
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F     ' 

i   I 

bCx.x') id) POISSON 
GENERATOR 

d(x) h(x,x') 

o(x)- 

»U.«*) 

r(x) 

h(x) 

Figur« 2:     LMSC  square filtcrtng problem 
in dUgranmAt ic  form. 
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image d(x)  is passed through a linear, space-variant restoration filter 

with impulse response Mx^Xj) , yielding a restored image r(x) given 

by 

r(x) -  j h(xfn)d(n)dn (3) 

The impulse response h(x.tx2)  is chosen to minimize the mean-square 

difference between the restored image r(x) and an ideally filtered 

object o(x).  In general» the ideal filter may be space-variant with 

impulse response s(x.tx~). 

At this point it is natural to inquire as to what set of conditions 

can lead to a I cast-mean-square filter which Is space-variant rather than 

space-invariant.  To answer this question, we must first present some 

theoretical results which can be derived without much difficulty, and 

which are presented here without proof. The impulse response h(x,x") 

of the restoration filter which achieves least mean-square error is the 

solution of the integral equation. 

hU.x-jR.U-.x'^dx" 
d 

s(x,x'-)*do(x-,x")dx'- W 

Here s(xtx")  is again the known impulse response of the ideal filter, 

while R. and R.  are also known ^unctions, given by 

RdU*.x") - Eld(x-)d(x")) 

• alT(Ä')6(x'-x-') ♦^5 R-<x\x'-)       (S) 
hv h v 
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i 

Rd0(^',x") - E(d(x')o(x--)] 

^IR (x'.x^) 
hv 

where i(x')  is the mean value of the image Irradlance at x"* , 

averaged over the ensemble of possible objects, R|(x',x")  Is the auto- 

correlation function of the image irradiance, and R, (x'.x") Is the 
10 

cross-correlation function of the image irradiance and the object radiance. 

More specif leally, 

go 

T(x') -  f b(x',x")o{*")6K" (7) 

R.U'.x") - E[l(x')l(x")] |f b(x%c)b(x-in] 

Ro(^n)dCdn . (8) 

R(0(H\X^) - E[l(x-)o(x^)] b(x'»c)R
0(c.,<^)dc • 

(9) 

where o(x'0  is the mean object radiance at x" i  and R0(c»n)  '* t*,e 

autocorrelation function of the object radiance distribution. 

Examination of this somewhat bewildering array of results leads 

one to the conclusion that the least-mean-square-error filter will be 

space-variant if any one of the following conditions hold: 

(1) The mean value o(x) of the object radiance distribution is not 

constant (i.< ., is indeed a function of x)  , the expectation 

being over the entire ensemble of possible objects; 

(2) The autocorrelation function R (C,n) of the object is non- 

stationary (i.e., depends on both C and n , rather than Just 

their difference). 
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(3)  The Impulse response bCx.^x») of the blur Is space variant {i.e., 

non isoplanatIc); 

(k)       The Impulse response s(x.fx_) of the Ideal filter is space 

variant. 

We now examine each of these conditions In the context of the 

compensated Imaging problem.  Consider first the mean value o(x) 

of the object radiance distribution over the object ensemble. AM space- 

objects are of course spatially bounded (I.e., of finite extenO.and 

for this reason we could argue that o(x)  Is always a function of x. 

However, In any real measurement we look In on the object process with a 

finite measurement window, cind It Is possible that over this measurement 

window the expected object radiance is constant.  On the other hand, it !s 

not difficult to identify situations In which the mean object radiance 

would be a function of position within the measurement window.  An example 

would be when the object of Interest is far smaller than the measurement 

window, but due to tracking errors Its posUlcn within the window obeys 

some non-uniform probability density function.  In such a case o(x) 

Is definitely a function of x , and therefore the least-mean-square 

restoration filter must of necessity be space-variant. 

Turning to condition (2), we would also expect the object auto- 

correlation function R (C.n)  to be non-stiu lonary under the conditions 

described above. Alternatively, even if there are no tracking errors, and 

the object has constant mean radiance in the field of interest, we might 

expect the central portion of» the object (i.e., the main body) to have 

different textural appearance than the extremities (appendages consisting 

of arms, booms, etc.), and hence a non-stationary autocorrelation function 
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might be required to properly describe the second-order statistics of 

the object. Again a space-variant restoration filter would be required 

for optimum performance. 

As for condition (3), space variance of the blur is anticipated 

when the size of the object exceeds the size of the isoplanatic region 

of the compensated Imaging system. Under such conditions» space-variant 

restoration Is again required If the smallest possible mean-square error 

Is to be achieved. 

Finally, condition (k),  space-variance of the ideal filter, can 

generally be Ignored, in most cases of interest it Is appropriate to use 

as an Ideal filter the diffraction limited telescope itself. Such a filter 

Is space Invariant» and as a consequence it Is always safe In these 

problems to assume that the Impulse response s depends only on the 

difference of Us two variables. 

At this point, we have Introduced arguments that demonstrate that 

In most practical applications of compensated imaging, the Ideal post- 

detection restoration filter will be space variant.  It is quite another 

matter to say precisely what the optimum filter is, and to calculate its 

performance. The chief diffIcu)tlei involved In this task are: 

(1) Specification of reasonable models for o(x) , R (x,x') and 

b(x,x') ; and 

(2) Solution of the inters! equation (*») for these models. 

Several attempts at finding a solution for various specific cases 

have not met with success. Case* examined included an object which Is 

a "windowed" stationary process (and therefore nonstationary), and an 

object with a nonstationary autocorrelation function of the form 
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fytff&S&f&fr**'-. 

Ro(xrx2) " r(X| 2 X2)6(x] " x2)       ()0) 

Since even these idea)istlcally chosen cases proved unsolvable, it was 

decided that the continuous approach would have to be abandoned in favor 

of a discrete approach. For a discrete formulation of the problem, the 

necessity of solving an integral equation to find the required impulse 

response h is replaced by the necessity of solving a matrix equation. 

The latter is far easier to do, in general. We therefore turn to a 

discussion of the discrete approach to the problem at hand. 

IV.  DISCRETE FORMULATION OF THE SPACE-VARIANT 

RESTORATION PROBLEM 

In this section we treat the same problem addressed in section III, 

but using a discrete representation of the various physical quantities 

involved. We begin with a discussion of the discrete representation 

itself and the physical meaning of the quantities involved, 

(a)  Discrete Notation 

The continuous object radiance distribution o(x)  Is replaced by 

a column vector o consisting of uniformly spaced samples of o(x) , it 

being assumed that the object Is approximately bandlimited and can there« 

fore be subjected to sampling without appreciable loss of Information.  In 

the case of a two dimensional object o(x,y) , the vector o Is con- 

structed by lexicographic ordering of the samples. For an object 

consisting of K*L  elements, the vector o contains H - KL elements. 

The blurring operation to which the object radiance Is subjected 

can be represented by an H*H matrix [B].  Such a matrix can represent 

a space-invariant or a space-variant blur, depending on the form of Its 

elements. The elements of  [b] are samples of the impulse response 

see the Appendix <:or a detailed definition of this term. 
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bU^xJ. The classical Intensity of the Image falling upon the photo- 

detector Is represented by a column vector j_ given by 

1 - (B]o (11) 

The detector Is assumed to consist of a discrete array of elements, 

each of which produces a photocount for the observation interval T used. 

Thus the detected signal Is represented by a column vector c[ of length 

M ;  it Is assumed that the n   element d  of d Is a Poisson random 
n    - 

variable, with mean given by 

X  - 2-™ i (|2) 
n     —  n 

hv 

where A is the area of a detector element, and i  Is the n 
n 

element of J^, Equivalently, we write 

A    .    nJAj^   .   ILH(B]O      . (13) 
hv hv 

where the n   element of X Is A . 
—     n 

The detected signal d^ Is subjected to linear filtering with the 

aim of restoration. The restoration filter is represented by a matrix 

[H], the elements of which are samples of the (possibly space-variant) 

impulse response h(x1,x?). The filter [H]  IS to be chosen to minimize 

a certain measure of error between the restored Image r_   given by 

r -  (H]d (Id) 

and an "Ideally filtered" object given by 

? - [S]o (IS) 

Here [S]  is an H*H matrix of samples of the impulse response 

s(x)txJ of the ideal filter. The use of a * over a matrix, here and 
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elsewhere In what follows, Implies that this matrix has been normalized 

such that 

max I  IS]   - 1 (16) 
m n 

A th A 

where [S] M    Indicates the (n^)   element of [S]. nm 

We define an error column vector £ given by 

£ ■ 5- 1 -  [S]o - [H]d (17) 

The restoration filter [H] will be chosen to minimize the mean-squared 

norm  of the vector £.  Equivalently we choose [H] to minimize the 

quantity 

4 - EJAJ - EjTr( LL)\ (18) 

where t signifies a transpose operation, E Is an expectation operator, 

and Tr( ) signifies the trace of a matrix (i.e., the sum of the elements 

along the main diagonal), 

(b)  Minimizing Hean-Squared-Error 

Substituting Eq.(17) in Eq.(l8), the mean-squared error to be 

minimized becomes 

i- tjlrUeMl 

- EJTr(([Slo • (H]d)([Sjo - Wo)1)] 

- E|Tr(lHld d^H]1 - 2(Slo ^(H]1 ♦ lS]o O^S]1)]   (19) 

The expectation can be performed in two steps. First we assume o Is 

fixed and take the expectation over only the Poisson statistics 

E {•) - Ei-I o) (20) 

Later we take a second expectation over the statistics of o. Thus 
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EpJTrCc^)!    -    Tr([H]E Idd^H]1 

- 2[S]o EpId^Hl' + [Sloo^S]1) (21) 

Because d Is Poisson distributed, with statistically independent 

components (assuming o Is fixed), It follows that 

'piff 

where the notation is defined by 

\   0 

0 '\ 
+ \ X (22) 

N 01 a ■ 

Lo   \J 0   **a 
w. 

(23) 

It is convenient at this point to normalize the matrices and vectors 

for future expressions. Again, a matrix [A]  is normalized to produce 
M 

[A] by factoring out a constant C - max J  [A]   from all the columns. m   i  nm        .. 
n-l M 

A vector a is normalized to produce a by factoring out  J a  from 
K  " n-l n 

all elements. As a consequence.  Ja - I. This normalization assumes 
n«! 

that the amount of light intercepted by and the net energy loss of the 

optical system does not change as a point source moves about the object 

field. 

Now, assuming that the energy loss is approximately constant over 

the field of view, (13) can be written 

X - i (Bio (2M 

where we have used 
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Ä  hv 
b nTA 
o 

(25) 

b  a y [B]   (assumed identical for all m). o   ^   nfn 
n 

Using (2k)   in (22), we obtain 

E jd dM    . 1 
k 
\   -       o 

[B]o 

0           \ 

+   -V [3]o ot[B]t 

In addition 

'PH ■   o^]1 

(26) 

(27) 

Finally, substitution of (26) and (27) in (21) yields the conditional 

expectation 

EplMce.1)! ■ Tr({Hl( jL 
'\. 

(Bio 

0     \ 

+ J_ (Bloo^Bl'jlH]
1 

itSjooMBlMH]1 ♦ IsJooMs)1 (28) 

The remaining task in calculating the desired error measure is 

to average over the object ensemble. Applying such an average to Eg.(28) 

yields 

6   -    Tr   [H]   N Bio        \  *H  W[% KBlMlH 
\ i /   . 

(Bl_ 
8 \i 

I1 

-  2k N^SHMlBl'lH]1 ♦ k2 N^ISK« ][S)t 

o o (29) 
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where the expected number of photoevents, N , in the image is 

N " E f I t (30) 

In addition, the definitions 

£ a ^ £)/1 ön 

[ig 
E oo' (30 

S* 
have been used. This is not a totally unusual normalization for  [51 ] 

since 

where 

Eo^ I UBlo) 
T2 

ox - va riance of / T X i 

(32) 

(33) 

Thus, if the variance of the number of photoevents per image is small, 

and the covariance of X is reasonably constant over the field of view, 

then 

^o1 : «o1 (3*) 

The final problem is to find the filter matrix  [H]  that minimizes 

the error measure 4 of Eq.(29). Fortunately, the answer to this 

problem is available in the literature and can be directly employed here 

(Ref.I). The filter matrix that minimizes 4 is given by 

•I 

[H] - k M[SJIt KB)' 
o 

•  (8)0 

0    \ 

♦ H(B][«o](Bjl! .  (3S) 

It should be emphasized that this filter will in general be space variant, 

depending on the properties of  (S) , |Bl. o , and  [f ). 
—        o 
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(c)  Minimum Mean-Squared Error 

In order to specify the performance of the optimum filter, it Is 

helpful to have an expression for the minimum mean-squared error £ . .mm 

actually achieved.  If vte substitute expression (35) for the optimum 

ftKer in expression (25) for the mean-squared error, we obtain 

*m\n k2 N2 Tr([S][*J([l] - WH Wo 

Nlslt^HB]1)"'[Bl^llsj1 (36) 

where [I]  is the identity matrix.  Sometimes It Is useful to have 

the minimum mean-squared-error In the alternative form 

'mm k2 N   Tr([SH«0]lSjt -  (HHBHJgiSl1) (37) 

For purposes of comparison with the continuous case.   It   Is 

Interesting  to manipulate  (36)   further,  yielding the form 

K,n    •    ^N2TrllSl(«0ll (Bjo 

P NJ 

(Bio 

0 \ 

♦NlBll^HBl* 
-I 

(38) 

Note the similarity of this result to expression for minimum mean- 

squared error in the continuous case (derived in our earlier reports). 

'mm SH2 ISIVVS 
(39) 
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(see, for example, Eq.(7) of RAOC-TR-77-165). An Important difference 

Is, of course, that Eq.(38) holds In the space-variant case, while 

Eq.(39) Is valid only for a space-Invar lent filter, 

(d)  Image QMallty Heasures 

Two different Image quality measures were found useful In the 

continuous case. One, which we called the "image qua!it/ factor", Q , 

was defined as the ratio of the "signal" energy at the output of tha 

restoration filter to the mean-squared error ("noise") at the output. 

A second, which we called the "restored bandwidth", AQ , was equivalent 

bandwidth of the cascade of the blur and deblurring filters. 

Concentrating first on the quality factor Q , we note that in the 

discrete case, the expected energy In the detected signal is given by 

the Inner product 

J  " £*Tr(lit)l 

• TrfN mo 
0     \ 

♦^(Bjli llBl1 (M)) 

The "signal" portion of this energy is given by the second term, 

if2Tr(tilUo)ÜJ,) ^ 

After passage through the restoration filter  [H] ( the signal energy at 

the output Is given by 

„2 
4 ä N Tr((Hl(8J[io)(B]

t(Hll) 

Substitution of the optimum [H] yields 

0.2) 
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lB]ö 

,-! 

♦ NfBJli JIB]1 

L-l 
[B][Jlol[Bl - siBi^Hsi1) tBKJgisr 

The image quality factor Q is then defined a» 

«3) 

('•'.) 
mm 

As for the second measure of image quality, restored bandwidth» 

the situation is a bit more difficult» since for a space-variant system 

there is no unique bandwidth that can be specified. Stated another way, 

there is in general a different bandwidth associated with every point 

in the fi1tered image 

In the continuous analysis of a space*invariant system, the restored 

bandwidth AIT was defined by 

■ (AU)2 -  if !BH|d>ixd^ ikS) 

If  the product of    8    and    H    (the normalized transfer functions of the 

blur and deblur  filters,   respectively)   is non-negative aid  real» as   is 

generally  the case  in practice,   then Eq.(^5)  can be rewritten 

liti)2 
[[ M-c.-n)bUtn)dCdn I) (W 

where b and h are »he inverse Fourier transforms of ft and H , 

respectively. This expression is the integral of the product of the 

two impulse responses, centered at the origin in this case. The same 
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restored bandwidth would be obtained by integrating the product of the 

impulse responses centered at any point in output plane, a consequence 

of the fact that both the blur and the restoration filter are space 

invar »ant. 

In the space-variant case, the product of b and h will yield 

functions with different areas, depending on where this product is 

centered in the output plane (x,y). The integral becomes 

«a 

iT(M?(x,y))2 - || h(x,y;^n)bU,n;x.y)dCdn f*7) 

-OB 

and  is clearly a function of which output coordinates    (x.y)    are chosen. 

The discrete analogy to Eq.^?) would be to define the restored 

bandwidth at the    n        output point by 

*(Ä?rn)2    -    (lH][B])nn Ü.8) 

where for matrix [A] , the symbol  ([A])   is the n   diagonal 
nn 

element of [A]. Since this quantity depends on the point n t It is 

not of itself a useful measure of image quality. However, all three of 

the following definitions would be useful: 

iCAfl^)2 - |jTr((HHel) tt^a) 

^^KAX'    ■    ***,imi111 ^i*^"1  «leflttnt of     [H] [B] (^b) ^KAX*2 

i(:JnH)N)2 •    Hinimum diagonal  element of     (H] [B]. ikfr) 

These definitions may be regarded as yielding average, maximum and 

minimum restored bandwidths, respe'et tvely ■ 

(•)  The Stationary, Shif tHnvar iant Case 

We now consider the form taken by ihe various results above in the 

special case of a shift-invariani matrix (H).  In this case, o is a 
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I 
constant vector with elements - , while the matrix [$ ]  takes on 

n Q 

roepliu form.  In addition, the ideal filter matrix [S] and the blur 
fX - _ 01 

matrix  [B]  take toepl i t/form, and the matrix li  [B]o 

the form IT [U- 
\ 

will be of 

If the covariance function of the object and the point-spread 

functions of the ideal and blur filters are sufficiently narrow, the 

toeplitz matrices above can be replaced by circulantA approximations. 

With this substitution the post-compensation filter matrix becomes 

-I 
[Hcl    -    kN[Sc](Jio llB^^id]  ♦NIBJI^ KBJ1) 

where the subscript    c    indicates a clrculant approximation. 

The quality factor    Q    becomes  in this case 

(50) 

Q ■ 
^r([SjlJoj(I(llT^(i^3^

:rT[IllScJ
t) • 

The equivalent bandwidth becomes 

"<AV2 " iTr(MBci) 
For any clrculant matrix  (C), the identity 

t-l 

(51) 

tc) [flUcit5l 

(52) 

(5*) 

holds, where [9]  is the two-dimensional discrete Fourier transform 

(OFT) matrix, and [A ]  is a diagonal matrix with elements that are the 

eigenvalues of [C]. Using this fact, the [K] matrix and the quality 

measures can be rewritten in the forms 

(Hj  • kNlyltAsHAt )|ABl'(lIl ♦ N(ABl(At HAB1*)■|(51, 

{Sk) 

See the Appendix for a detailed definition of this term. 
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TrAyJtA^lAeHAj, ](AB]*([I] + MtAgl(AJ, 1[AB],V)' [?]'') 
Q   . 2 £__  / 

k2(Tr(m[As](A8 l([l] + N[AB][AÄ ](ABl")    lAs]*IJ]*y 

n(Ai!AV)2    •    jlf Tr^yHAjUoHJl"1) 

Note that the eigenvalues of a clrculant matrix are the values of the 

OFT of the first column of the clrculant matrix. 

Bfcause of the diagonal forms of (5*01 (55) and (56), It Is 

convenient to represent the n   component of the OFT of the restored 

Image by R(n) » and the n   component of the OFT of tbe detected 

Image by 0(n). Then we have 

(55) 

(56) 

R(n) 
k N S{n)B  (nU  (n) 
 _    0  D(n) 

I  + N(B(n)|  t.(n) 

and 

-2y N    I 
n 

iBinll^JSOOI^n) 

(l  + N|B(n)|2»o(n)] 

tS(n)|%o(n) I 
n   I + N|B(n)|% (n) 

(57) 

(58) 

whar« *  Is the OK of JL    Further, 
o ^ 

r(AilAV)  - ~l  H(n)B(n) (59) 

These last three equations are oxact analogs of the results presented 

In earlier reports for the continuous case, the only difference being 

the replacement of Integrals by discrete iums. Thus the results of the 

more general space-variant analysis do Indeed reduce to the results 

obtained in earlier analyses of the space-Invariant case. 
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V. NUMERICAL COMPUTATIONS IN PROGRESS 

At this time computations are being performed on four simple Initial 

cases. These initial cases all involve one dimensional objects only, 

and each has at most one shift-variant or non-stationary factor. One 

case is totally stationary and shift-invariant. 

For each of these cases the image quality factor Q. of (kk) and the 

three forms of the restored bandwidth (^9) are being computed. In the 

three non-stationary or shift-variant cases the image quality measures 

are being computed using a series of shift-invariant restoration filters 

[H]. In the totally stationary, shift-Invariant case only the optimum 

shift-invariant [H] are being used. For the three non-stationary or 

shift-variant cases the image quality measures are also being computed 

using the optimum shift-variant filter of (35)« The shift-variant and 

shift-invariant filter performances will then be compared. 

Of our initial cases, case ) is totally stationary and shift- 

invariant. For this case o is assumed to be 

o - ii (60) 

where ^ is a vector of all ones.  In general the following relation 

holds 

(*0] - UJ *■££ (61) 

where 
t 

U01 " E{(o - o)(o r ?) } (62) 

In the stationary case the covarlance matrix U ]  is assumed to be 

U0] - ö2m (63) 

For this shift-invariant case the blur is assumed to produce a Gaussian 

point-spread function.  In each of the following three cases, only 
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one of the above assumptions about o , U ] , and [b] wil) be changed. 

Thus it should be possible to determine what factors are most improved 

by the shift-variant fiiter [h]. 

In case II the blur [b]  Is no longer assumed to be shift-invariant, 

but instead is assumed to have a position dependent width which 

Increases near the edges of the image. AM other factors are assumed 

the same as case I. 

in case III the object ensemble is assumed to have a Gaussian mean 

intensity profile centered in the field of view. All other factors 

are again assumed the same as case 1. 

In the last c^se, case IV, the auto-covarlance function [<J> )  is 

assumed to be of the form 

where 

<Mij o «:i exp^ 
f-(^} 

'IJ 

w 

ij 

■1   I - j 

.0 \  * } 

a width parameter 

(6M 

(65) 

o  - center variance 

Thus it is assumed that the object ensemble has a non-stationary 

variance which decreases toward the edges of the object. As in the above 

two cases, the other factors are assumed the same as case I. 

Results of these calculations will be presented in our next technical 

report. 
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APPENDIX 

In this appendix we define several specialized terms used in the 

body of the report. 

Lexicographic ordering 

It1Is common practice In the image processing community to represent 

two-dimensional arrays of samples by vectors. If, for example, an image 

Is sampled on a two-dimensional sampling grid, It is perhaps most 

naturally represented by a matrix of sample values: 

[I] 

'11 

f21 

12 IN 

'ZN 
(A.l) 

Nl   N2   NN 

For mathematical purposes. It Is often convenient to reduce this matrix 

to a vector \_, This Is accomplished by scanning the matrix row by row 

to create a one-dlmenslonal array of samples: 

11 

'IN 

'21 

^N 

(A.2) 

.y 
The vector £ Is s«Id to have been constructed by lexicographic 

ordering of the matrix [I]. 
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Toeplitz Matrix 

A matrix [A] is said to be. a Toepl itz matrix if It has the property 

that, whenever j - k ■ m - n , the elements [A],,  and [A]   are 
j K       mn 

equal. An example of a Toeplitz matrix is given below: 

[A] (A.3) 

2       k       7       S 

9   2   4? 

6 3   2   J* 

^8   6  9   2_ 

The covariance matrix of a wide-sense stationary random process is 

always a Toeplitz matrix. 

Circulant Matrix 

A matrix [C]  is called circulant if each of its rows is a right 

cyclic shift of the previous row by one element. The first row must be 

a right cyclic shift of the last row by one element. An example of a 

circulant matrix Is given by 

ft   *♦   7   5" 

12^7 

7 5   2   4 

14   7   5   2. 

Note that by "cyclic shift11 we mean the shifting of rows must be of the 

'Wap-around" type. That is, when an element Is shifted out on the right, 

it immediately reappears on the left. Note, also that all circulant 

matrices are Toeplitz in form. 

tt is common practice in image processing to approximate some forms 

of Toeplicz matrices by constructing circulant matrices from them.  If 

a Toeplitz matrix has only a few localized non-zero diagonals, a circulant 

lei (A.«.) 
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approximation Is often constructed by replacing some of the zero diagonals 

with non-zero diagonals thus forming the result into the circulant form. 

As an example, the ToepWtz matrix 

[T] 

7 5 1 0 0 0 0 

3 7 5 1 0 0 0 

2 3 7 5 1 0 0 

0 2 3 7 5 1 0 

0 0 2 3 7 5 1 

0 0 0 2 3 7 5 
0 0 0 0 2 3 7 

(A.5) 

can be converted to the circulant matrix 

[T-] 

7 5 1 0 0 

3 7 5 1 0 

2 3 7 5 1 

0 2 3 7 5 
0 0 2 3 7 
1 0 0 2 3 
5 1 0 0 2 

2 3' 
0 2 

0 0 

1 0 

s 1 

7 5 

3 7_ 

(A.6) 

by changing the three upper right and lower left zero elements. 

Computations using circulant matrices can be performed faster than those 

for Toeplltz matrices because the discrete Fourier transform can be 

utilized. As the fraction of diagonals of the Toeplltz matrix which are 

non-zero decreases, the circulant approximation approaches the original 

matrix, and the errors associated with the use of the circulant approxi- 

mation can be shown to decrease. 
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